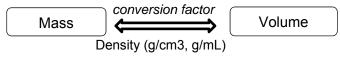
₹Math/ Science Center

Unit Conversions

Important Tips


- Always write every number with its associated unit.
- ➤ Always include units in your calculation.
 - ✓ you can do the same kind of operations on units as you can on numbers.
 - ✓ using units as a guide to problem solving is called dimensional analysis
- Conversion factors are relationships between two units
- Conversion factors can be generated from equivalence statements (e.g. 1 inch = 2.54 cm)
- > Arrange conversion factors so the starting unit is on the bottom of the first conversion factor

Conceptual Plan

Systematic Approach to Problem Solving

Convert 5.70 L to cubic inches				
Sort Information	Given:	5.70		
	Desired:	in. ³		
Strategize	Conceptual Plan			
	Relationships:	1 mL = 1 cm ³ , 1 mL = 10^{-3} L 1 in. = 2.54 cm.		
Follow the conceptual plan to solve the problem	Solution: 5.70 L × $\frac{1 \text{ mL}}{10^{-3} \text{ L}}$ × $\frac{1 \text{ cm}^3}{1 \text{ mL}}$ × $\frac{(1 \text{ in.})^3}{(2.54 \text{ cm})^3}$ = 34 $\underline{7}$.835 in. ³			
Sig. figs. and round	Round	34 <u>7</u> .835 in. ³ = 348 in. ³ (3 sig. fig.)		
Check	units are correct; number makes sense: in.3 << L			

Density as a Conversion Factor

What is the mass in kg of 173,231 L of jet fuel whose density is 0.768 g/mL?					
Sort Information	Given:	173.231L, density = 0.768 g/mL Mass, kg			
	Desired:				
Strategize	Conceptual Plan	$\begin{array}{c c} L & \Longrightarrow & g & \Longrightarrow & kg \end{array}$			
	Relationships:	1 mL = 0.768 g (from density) 1 mL = 10^{-3} L, 1 kg = 1000 g			
Follow the conceptual plan to solve the problem	Solution: $173,231 \text{L} \times \frac{1 \text{ mL}}{10^{-3} \text{L}} \times \frac{0.768 \text{ g}}{1 \text{ mL}} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 1.3304 \text{ x} \times 10^5 \text{ kg}$				
Sig. figs. and round	Round	1.3 <u>3</u> 04 x 10 ⁵ kg = 1.33 x 10 ⁵ kg			
Check	units and number makes sense				

SI Prefix Multipliers

Prefix	Symbol	Multiplier	Power of 10
giga	G	1,000,000,000	Base x 10 ⁹
mega	M	1,000,000	Base x 10 ⁶
kilo	k	1,000	Base x 10 ³
deci	d	0.1	Base x 10 ⁻¹
centi	С	0.01	Base x 10 ⁻²
milli	m	0.001	Base x 10 ⁻³
micro	μ	0.000001	Base x 10 ⁻⁶
mano	n	0.00000001	Base x 10 ⁻⁹
pico	р	0.00000000001	Base x 10 ⁻¹²

Volume (1 mL = 1 cm 3) solid volume (cubic centimeters, cm 3) liquid or gas volume (milliliters, mL) 1 m 3 = 10 6 cm 3 1 mL = 0.001 L = 10 3 L 1 cm 3 = 10 6 m 3 = 0.000 001 m 3 1L = 1 dm 3 = 1000 mL =10 3 mL

Practice Problems

- 1. Use the prefix multipliers to express each measurement without any exponents.
 - a) 1.2×10^{-9} m
 - b) 22×10^{-15} s
 - c) 1.5×10^9 g
 - d) $3.5 \times 10^6 L$
- 2. Perform the following conversions.
 - a) 25.5 mg to g
 - b) 4.0×10^{-10} m to nm
 - c) 0. 575 mm to µm
 - d) 68.3 cm³ to cubic meters
 - e) 242 lb to milligrams (1lb = 453.6 g)
- 3. The density of platinum is 21.45 g/cm³ at 20 °C. What is the volume of 87.50 g of this metal at this temperature?
- 4. Mercury is the only metal that is a liquid at room temperature. Its density is 13.6 g/mL. How many grams of mercury will occupy a volume of 95.8 mL?
- 5. Liquid nitrogen is obtained from liquefied air and is used to prepare frozen goods and in low-temperature research. The density of the liquid at its boiling point (-196 °C) is 0.808 g/cm³. Convert the density to units of kg/m³.

References:

Tro, Chemistry: A Molecular Approach 2nd ed., Pearson Brown/LeMay/Bursten, Chemistry: The Central Science, 12th ed., Pearson

1. a) 1.2 nm; b) 22 fs; c) 1.5 Gg; d) 3.5 ML **2.** a) 2.55 x 10^2 m³ e) 1.10 x 10^3 mg **3.** 50.35 cm³ **4.** 1.30 x 10^3 g **5.** 808 kg/m³